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LONG-TERM GOALS 
 
To apply optimal data assimilation techniques to ocean circulation models in order to improve short-
range prediction of mesoscale circulation. 
 
OBJECTIVES 
 
The immediate scientific objective of this research project is to develop a data assimilation system, 
based on ensemble Kalman filter (EnKF) techniques, and to apply this system to a realistic eddy-
resolving ocean circulation model. 
 
APPROACH 
 
The basic elements of an ensemble-based data assimilation system include a system for collating and 
preparing observations, combining observations with a model now-cast, initializing and running an 
ensemble of forecasts and estimating model and observation errors. Each of these components are 
currently under development and are being systematically tested on a suite of models ranging from a 
simple linear model (Evensen 2004), to a small highly non-linear model (Lorenz and Emmanuel 1998), 
and finally to an idealised and realistic configuration of an ocean general circulation model (MOM4.0; 
Griffies et al. 2004). 
 
Under this project, we have explored the rationale for different ensemble-based assimilation algorithms 
and techniques; and compared the performance of different filters for a suite of small models (Oke et 
al. 2006; Sakov et al. 2006). Subsequently, we have developed a new formulation for the EnKF that we 
refer to as the deterministic EnKF (DEnKF; Sakov and Oke 2006).  
 
We have begun to assess some of the above-mentioned developments through their application to an 
ocean general circulation model. The assimilation system we have used for this is the Bluelink Ocean 
Data Assimilation System (BODAS) that has been developed by the P.I. under a closely related project 
called BLUElink (see Related Projects for details). BODAS is a modular ensemble-based data 
assimilation system that computes an analysis of the three-dimensional ocean circulation by combining 
the relevant elements of an ensemble of anomalies of model variables, a model forecast and a range of 
observations. To date, an ensemble optimal interpolation (EnOI; Oke et al. 2002) version of BODAS 
has been applied to the Ocean Forecasting Australia Model (OFAM; Schiller et al. 2006), a global 
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configuration of MOM4.0, with eddy-resolving resolution around Australia. BODAS and OFAM have 
been combined and implemented into the Ocean Model, Analysis and Prediction System 
(OceanMAPS) that is currently undergoing operational trials at the Australian Bureau of Meteorology. 
Under this project we have developed an EnKF version of BODAS. This system is currently being 
evaluated.  
 
Key individuals: 
 
Dr. Peter Oke is the P.I. on this project and leads the data assimilation group at CSIRO Marine and 
Atmospheric Research (CMAR). Dr. Oke is responsible for the development of BODAS under the 
BLUElink project. 
 
Dr. Pavel Sakov is currently investigating algorithms for ensemble data assimilation and methods for 
optimal array design under a related project. 
 
Dr. Stuart Corney was hired by CMAR in April 2004 to conduct research under this project. Dr Corney 
has developed a prototype EnKF system based on BODAS and has applied it to a regional 
configuration of MOM4.0.  
 
The US-based researchers involved in this project are Dr. H. Ngodock, Dr. G. Jacobs and Dr. R. 
Miller. All have a long history of research in the area of ocean data assimilation. 
 
WORK COMPLETED 
 
We have completed a study that compared the performance of an EnKF with perturbed observations 
(Burgers et al. 1998) and EnOI when applied to a two-variable linear system that is similar to that of 
Evensen (2004). In this study we have investigated the impact of localisation (Houtekamer and 
Mitchel 2001; Hamill et al. 2001) on a filter’s performance and on the dynamical balances that are 
inherent in the model (Oke et al. 2006). 
 
We have explored the theoretical basis for different formulations of the ensemble square-root filters 
(ESRF; e.g., Tippett et al. 2003) and shown that only a sub-set of these algorithms work, in practice, as 
they are intended to work in theory. Additionally, through a series of numerical experiments we have 
compared the performance of different filters when applied to two small models (Sakov et al. 2006). 
 
We have proposed a new formulation for the EnKF that combines the simplicity and flexibility of the 
traditional EnKF with the robustness and superior performance of the ESRF (Sakov and Oke 2006a). 
We call this formulation the DEnKF. 
 
A prototype EnKF system, based on BODAS, has been developed and applied to an idealised 
configuration of MOM4.0 that models the mesoscale ocean circulation in Bass Strait (between Victoria 
and Tasmania, Australia). This prototype system is currently being evaluated. 
 



RESULTS 
 
Impacts of localisation in EnOI and EnKF: 
 
The performance of an inexpensive, EnOI scheme that uses a stationary ensemble of model anomalies 
to approximate forecast error covariances, is compared with that of an EnKF with perturbed 
observations. The model to which the methods are applied is a pair of “perfect” one-dimensional, 
linear advection equations for two related variables. While EnOI is sub-optimal, it can give results that 
are comparable to those of the EnKF (Figure 1). The computational cost of EnOI is typically about 1/N 
times that of the EnKF, where N is the ensemble size. We suggest that EnOI may provide a practical 
and cost-effective alternative to the EnKF for some applications where computational cost is a limiting 
factor. We demonstrate that when the ensemble size is smaller than the dimension of the model’s sub-
space, both the EnKF and EnOI may require localisation around each observation in order to eliminate 
effects of sampling error and to increase the effective number of independent ensemble members used 
to construct an analysis. However, we find that localisation can degrade an analysis if the length scales 
of the localising function are too short. We demonstrate that as the length-scale of the localising 
function is decreased, localisation can significantly compromise the model’s dynamical balances. We 
also find that localisation artificially amplifies high frequencies for applications of the EnKF. Based on 
our experiments, for applications where localisation is necessary, the length-scales of the localisation 
should be larger than the decorrelation length-scales of the variables being updated. 
 

 
Figure 1: Root-mean-squared error (RMSE) for a linear advection model versus time, for an EnKF 

and EnOI with different ensemble sizes, N (ranging from 10-100) with covariance localisation; 
showing that while EnOI is less optimal than EnKF it can produce comparable results (N.B. EnOI 

costs less than 1/N times that of the EnKF); adapted from Oke et al. (2006). 
 

Comparison of ensemble-based filters: 
 
ESRFs update an ensemble of forecasts in two steps. In the first step, the ensemble mean is updated 
using the analysis equation from Kalman filter theory. In the second step, the ensemble anomalies 
(perturbations) are transformed (updated) so that their covariance matches the theoretical analysis error 
covariance from Kalman filter theory. There are a number of algorithms for this transformation (e.g., 



Tippet et al. 2003; Evensen 2004). The most efficient of these ESRFs is the Ensemble Transform 
Kalman Filter (ETKF; Bishop et al. 2001). We demonstrate that only a subset of ESRF algorithms that 
are currently employed preserve the ensemble mean (from step one). As a result, the ensembles 
covariance no longer matches the theoretical values (in step two), as ESRF theory intends. This 
renders the filter sub-optimal. We demonstrate the significance of this through a series of experiments 
with two small models; a linear advection model (Evensen 2004; a simple, stationary, linear model) 
and the Lorenz-40 model (Lorenz and Emmanuel 1998; a complex, highly non-linear model that is 
often used to evaluate data assimilation schemes (e.g., Whitaker and Hamill 2002; Ott et al. 2004). No 
inflation (where one artificially increases the ensemble spread about the mean) was used for the linear 
advection model; but a range of inflations (from 0-10%) were tested for the Lorenz-40 model. Figure 2 
shows the root-mean-squared error (RMSE) versus ensemble size for both models. For the Lorenz-40 
model, the results are shown for the inflation that gave the smallest RMSE for a given ensemble size; 
from Figure 3, where RMSE is plotted as a function of ensemble size and inflation factor. Clearly, the 
ESRFs that use a mean-preserving transformation (i.e., symmetric and mean-preserving random 
rotations (RR)) are superior to the other ESRFs and the traditional EnKF. The foot-print of the 
contours in Figure 3 is an indication of the robustness of each filter (white squares indicate filter 
divergence); and smaller inflation is generally desirable. The mean-preserving ESRFs are the most 
robust, most accurate and require the least inflation. 
 
While Wang et al. (2004) reported a “small improvement” using a mean-preserving filter over a non-
mean-preserving filter in an atmospheric general circulation model, we suggest that their chosen metric 
(an energy norm) for assessing the performance of different filters was inappropriate. As a result, we 
suggest that Wang et al. (2004) understate of the importance of using a mean-preserving 
transformation. A number of recent studies have used non-mean-preserving solutions (e.g., Evensen 
2004; Leeuwenburgh 2005; Leeuwenburgh et al. 2005; Torres et al. 2006), indicating that the 
importance of preserving the mean during the ensemble transformation is not generally appreciated. 
Based on both our understanding of the ESRF theory and our numerical experiments, we argue that 
only mean-preserving solutions should be used in practical data assimilation. 



 

 
 

Figure 2: RMSE versus ensemble size for the linear advection model (left; with no inflation; model 
dimension = 51) and for the Lorenz-40 model (right; for the “best” inflation from Figure 3; model 

dimension = 27) for different ensemble-based filters (mean preserving filters include ETKF, 
Symmetric and ETKF, mean-preserving RR). The superior performance of the mean-preserving 

ESRFs is evident by smaller RMSE for all ensemble sizes; adapted from Sakov et al. (2006). 



 
 

Figure 3: RMSE versus ensemble size and inflation factor for the Lorenz-40 model for different 
filters showing the superior performance of the mean-preserving filters (ETKF, symmetric and 

ETKF, mean-preserving random rotations) and the DEnKF; experiments that do not converge and 
white; adapted from Sakov et al. (2006) and Sakov and Oke (2006). 

 
A deterministic EnKF: 
 
We propose a new formulation for the EnKF that boasts the performance and robustness of the ESRF 
with the simplicity and versatility of the EnKF. We refer to this filter as the Deterministic EnKF 
(DEnKF). Following the original proposition of the EnKF (Evensen 1994), Burgers et al. (1998) noted 
that a straightforward implementation of the EnKF results in a premature ensemble collapse. They 
proposed the use of perturbed observations as a solution. This has generally become the standard for 
the EnKF; and is typically employed, along with covariance localisation for practical applications 
(e.g., Houtekamer and Mitchel 2001). However, the EnKF with perturbed observations can become 
problematic when a small ensemble is used because of sampling error. This has led some researchers 
to employ deterministic ESRFs (e.g., Tippett et al. 2003; Evensen 2004) that do not suffer from 
sampling error and are therefore more robust; particularly when a small ensemble is used. However, 
we note that the inclusion of covariance localisation with the ESRF requires observations to be 
assimilated serially, one at a time, which becomes computationally inefficient when many observations 



are used. The DEnKF, proposed by Sakov and Oke (2006), boasts a performance that is comparable to 
the ESRFs (for all cases we’ve considered), but readily permits localisation, like the EnKF. We’ve 
shown that  without perturbed observations, a straightforward implementation of the EnKF yields an 
analysis error covariance that can be expressed as: 

TTfffa KHKHPKHPPP +−= 2 ,       (1) 

where P is the error covariance and superscripts a and f denote analysis and forecast respectively; K is 
the Kalman gain and H is the observation operator. By neglecting the quadratic term in (1), which is 
valid when K is small, we note that the gain is twice as large as it should be to match the theoretical 

analysis error covariance, . We therefore suggest a simple alternative to the traditional 
EnKF, where the ensemble mean is updated using the standard analysis equation from Kalman filter, 
just like an ESRF; and the ensemble anomalies are also updated using the analysis equation from the 
Kalman filter, but with half the Kalman gain: 
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where A denotes an ensemble of anomalies. Using this formulation, the ensemble analysis error 

covariance approximately matches the theoretical values, 
TTff KHKHPPKHI
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A comparison between an ESRF with a mean-preserving transformation (see ETKF, symmetric and 
ETKF, mean-preserving random rotations in Figure 3) and the DEnKF for the Lorenz-40 model is 
shown in Figure 3. We find that the DEnKF performs almost as well as the mean-preserving ESRFs; 
and that it is clearly superior to the EnKF with perturbed observations, particularly for small ensemble 
sizes. 
 
The DEnKF has many practical advantages over both the ESRF and the traditional EnKF. The DEnKF 
retains the simplicity and versatility of the traditional EnKF. That is, it can be developed and 
implemented relatively easily; and it readily permits the use of localisation (Houtekamer and Mitchel 
2001; Hamill et al. 2001) like the EnKF. By contrast, the ESRF does not readily permit localisation, as 
noted above. It can be shown that the DEnKF is a linearization of the ESRF; and is deterministic. 
Consequently, it does not suffer from the same sampling error that can degrade the performance of the 
EnKF when small ensemble are used. Compared to the ESRF, the DEnKF will always over-estimate 
the ensemble spread, rather than under-estimating it. This means that while the filter may not converge 
as quickly or quite perform as optimally as an ESRF (Figure 3), it will be more conservative, and more 
“forgiving” of mis-specified errors; and is not as susceptible to ensemble collapse or filter divergence 
as ESRFs. We argue that for any practical data assimilation system, the DEnKF offers a near-optimal 
and computationally efficient alternative to the ESRF. 
 
IMPACT/APPLICATIONS 
 
A new version of the EnKF has been proposed, here referred to as the DEnKF. This filter boasts the 
computational simplicity and efficiency of the traditional EnKF; but performs almost as well as the 
more complicated ESRFs. The DEnKF has the advantage over the ESRF that it readily permits 
covariance localisation that is typically required for most practical applications. We argue that the 
DEnKF should be considered for any application of an ensemble-based assimilation system. 



 
Based on our research, we argue that if an ESRF is to be used; then only mean-preserving 
transformations should be used in practice. All other ESRFs are sub-optimal. 
 
This research involves the development of a data assimilation tool that will be suitable for a variety of 
ocean models and configurations. We are particularly focused on making this tool useful for short-
range prediction of mesoscale variability. We anticipate that this tool will be valuable for all agencies 
involved in this project. 
 
RELATED PROJECTS 
 
The BLUElink: Ocean Forecasting Australia project (http://www.marine.csiro.au/bluelink/) is a 
partnership between the CSIRO Wealth from Oceans Flagship Program, the Australian Bureau of 
Meteorology and the Royal Australian Navy. An EnOI version of BODAS has been developed and 
applied to OFAM to perform the Bluelink ReANalysis (BRAN) that spans 1992-2004. BRAN 
assimilates altimetric and coastal sea-level, and in situ temperature and salinity observations from all 
available sources (e.g., Argo, WOCE, TAO, SOOP XBT). Comparison with independent observations 
indicates that BRAN successfully represents the true history of the near-surface mesoscale circulation 
around Australia for the past decade. For example, Figure 4 demonstrates excellent agreement between 
the paths taken by un-assimilated satellite-tracked surface drifters and the BRAN sea-level anomaly 
fields off eastern Australia during 2000. BRAN uses an EnOI version of BODAS with covariance 
localisation. This experiment indicates that a simple EnOI system can constrain a realistic, eddy-
resolving ocean general circulation model (Oke et al. 2005; Schiller et al. 2006). We therefore argue 
that this approach is suitable for operational ocean prediction. 



 
 

Figure 4: A sequence of reanalysed sea-level anomalies (monthly means) off eastern Australia 
from BRAN and surface drifter paths for the 1 month period centered at the specified date in 

2000. Negative (cyclonic) anomalies are blue; positive (anti-cyclonic) anomalies are red; zero is 
white; adapted from Oke et al. (2005). 

 
Research on optimal array design and the improved ensemble data assimilation algorithms have also 
been supported by the CSIRO Wealth from Oceans Flagship Program (http://www.csiro.au/csiro/ 
channel/pchba,,.html). A key element of this program is the enhancement of our ocean forecasting 
capabilities. Under this project we have developed a method for designing an optimal observation 
array using ensemble-based data assimilation theory (Oke and Schiller 2006; Oke and Sakov 2006a); 
and developed a method for estimating representation error for oceanic observations (Oke and Sakov 
2006b). Much of this research has strong synergies with the project that is the subject of this annual 
report. 
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